
Analyzing User Actions within a Web 2.0 Portal to Improve a Collaborative Filtering
Recommendation System

Andrea Turati, Dario Cerizza, Irene Celino
CEFRIEL – ICT Institute Politecnico di Milano

Via Fucini 2, 20133 Milano, Italy
{andrea.turati, dario.cerizza, irene.celino}@cefriel.it

Emanuele Della Valle
Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
emanuele.dellavalle@polimi.it

Abstract

The current Web manifests the problem of information
overload, especially due to the success of the Web 2.0
paradigm, in which users provide new contents quickly. To
help people find the most valuable information, many Web
sites include a recommendation system based on a rating
mechanism. However, such approach cannot be used when
a rating mechanism is not present and, in addition, it does
not take into account all the actions performed by the
users. We propose an extension of the collaborative filtering
approach to design a more effective recommendation system
that overcomes those limitations.

1. Introduction

Recommendation systems are a specific type of informa-
tion filtering technique that attempts to present information
items (e.g. movies, songs, books, news, images, Web pages)
that are likely of interest to the user.

The majority of the successful Web sites including rec-
ommendation systems – like Amazon.com, MovieLens, Net-
Flix, Pandora and Last.fm – usually implements a mech-
anism that allows users to explicitly assign ratings to the
items. However, this method cannot be adopted in context
where users are not allowed to leave an explicit evidence
about their preference. Furthermore, even if such a mecha-
nism exists, this approach does not take into account many
aspects of the user behavior that might be relevant.

In this paper, after a brief description of the current state
of the art of the recommendation systems (see Section 2),
we inspect how it is possible to enrich the “standard” col-
laborative filtering technique analyzing the users’ behavior
in order to improve the quality of the recommendations
and we describe a project named Service-Finder where we
implemented the approach presented in this paper, which we
aim to extend in the SOA4All project1 (see Section 3).

1. http://www.soa4all.eu/

2. State of the Art

Information filtering systems decide to select or discard
items taking into account the user that will get the results.
This is done by comparing the user’s profile (i.e. a represen-
tation of his interests or tastes) to some reference character-
istics. A user’s profile can be created and maintained either
explicitly (i.e. the user specifies it by stating his preferences)
or implicitly (i.e. the system monitors his behavior and
makes deductions). The characteristics that are compared
to the user’s profile depend on the algorithm implemented
into the information filtering system (or the recommendation
system). In literature, two different approaches exist [1]: the
content-based approach extracts such characteristics directly
from the information items while the collaborative filtering
approach derives them from the user’s social environment.

Given a user, a content-based recommendation system
suggests those items having the highest correlation between
their contents and the user’s profile. Therefore, given an item
that a user liked very much in the past (i.e. the user assigned
it a high rating), it suggests the most similar items being
confident that the user will like them [4].

Given a user, a collaborative recommendation system
suggests those items preferred by people with a profile most
similar to the user’s one (i.e. the user will be recommended
items that people with similar tastes liked in the past).

Mathematically, the problem can be modeled through a
matrix where users and items intersect (see equation 1). Let
U be the set of all n users that use the system and I the
set of all m items managed by the system. A generic user
uj ∈ U can express his opinion about an item ik ∈ I by
assigning a rating ruj ,ik

, which is normally in a binary or
numerical scale.

R =


ru1,i1 ru1,i2 · · · ru1,im

ru2,i1 ru2,i2 · · · ru2,im

...
...

. . .
...

run,i1 run,i2 · · · run,im

 (1)

The ratings that user uj assigned to items represent
his preferences, so the user profile used for computing



recommendations can be formulated as {ruj ,i|i ∈ I}, which
is the row corresponding to user uj in the matrix R.

Accordingly to [2], there are two general classes of
collaborative filtering algorithms, which differ in the use of
the matrix R: memory-based and model-based.

Given a user, the memory-based approach identifies his
profile (i.e. a row in the matrix R) and compares it with
all the other user profiles, e.g. using the Pearson correlation
coefficient, or the mean squared difference, or the cosine-
based algorithm [8]. In this way, user profiles that are most
similar to the given one (i.e. their corresponding two rows
in the matrix contain similar values, which means that the
users gave similar ratings to the same items) are marked
as neighbors of the given user. Finally, the ratings of the
neighbors are used to estimate the rating that the target user
would give to a specific unseen item.

A variation of the memory-based approach described so
far has been named item-based or item-to-item collaborative
filtering [3], [6], where the similarity is calculated for the
items instead of users (i.e., it compares the columns of the
matrix R instead of the rows).

The model-based approach aims at compiling a mathemat-
ical model reflecting user preferences, using the matrix R to
learn some internal parameters and clustering techniques to
group the users. This can be done by first compiling (off-
line) the complete data set into a descriptive model of users,
items and ratings and then computing recommendations by
consulting the model [5], [7].

3. Designing a Recommendation System for a
Web 2.0 portal

Service-Finder is a Web 2.0 portal2 that allows users
to look for Web services. Beside three standard search
functionalities (i.e. free-text search string, a category tree and
a tag cloud), it suggests Web services through a recommen-
dation system. SOA4All is another project that goes beyond
Service-Finder by providing users with the possibility to se-
mantically describe and execute both services and processes
that involve them. It also includes a recommendation system
to suggest semantically annotated services and other entities.

In this section we provide an overview of the way we
followed in Service-Finder (and that we are going to extend
in SOA4All) to design and implement a system that exploits
rich information to make recommendations.

3.1. The Approach for Making Recommendations

The ratings that users assign to services can be used by
the recommendation process to evaluate user profiles and
make recommendations. However, the fact that a user prefers
a service can be inferred by the observation of the user

2. http://demo.service-finder.eu/

behavior with respect to the service. Indeed, within the portal
users perform many actions with respect to the services – and
not only assigning ratings – and, for example, if a user views
the details of a specific service many times and spends a lot
of time in editing the service details, then it is possible to
say with confidence that the user is addicted to that service.

We associated a weight to each action that a user may
perform while visiting the portal (see Table 1). Higher
positive weights are associated to actions giving a clear
evidence of the high appreciation of the service, while
lower positive weights are associated to actions where the
appreciation is not so evident or is lower. On the other hand,
the actions giving a clear evidence of the rejection of the
service are associated with negative weights.

By properly combining all weighted actions that a user did
related to a specific service, the system identifies a number
reflecting the strength of the relation between the user and
the service. A strong relation between a user and a service
means that the user really appreciates the service and would
recommend it. A weak relation means that the user is not
interested in the service or dislikes it, so it is not worth
recommending it. The numbers representing the strength of
the relations correspond to the values included in the user-
item matrix described in Section 2.

Action Weight
Assign a high/positive rating with a comment to a service 10
Assign a high/positive rating without a comment to a service 8
Add into bookmarks 7
Assign a tag to a service 6
Edit a service 5
Try to invoke a service 4
Click a link related to a service to go to an external document 3
Compare a set of services 3
View the details of a service 2
Select a service (e.g. from the search results) 1
Remove the service from bookmarks -2
Assign a low/negative rating with a comment to service -5
Assign a low/negative rating without a comment to service -10

Table 1. The initial weights of the user actions

Comparing the relations concerning two different users, it
is possible to estimate the degree of similarity between the
two users: if the set of services tightly connected to a user
overlaps considerably the set of services tightly connected
to the other one, then the two users are somehow similar. In
this way, similarities between all users are computed. Then,
given a specific user, it is possible to suggest services that he
might be interested in, because those services are appreciated
by other users that are similar to him.

3.2. Architecture and Implementation of the Rec-
ommendation Component

Figure 1 shows the internal architecture of the recom-
mendation component (arrows represent data flows). The



Parser continuously monitors the file system and, after the
appearance of new log files, it extract information from
them. The extracted information is temporarily inserted into
a database named User History, which represents the history
of all user actions done in the portal. Then, the User-
Service Correlation Analyzer accesses the information stored
in the User History and calculates the relations between
users and services. The result of the analysis is a User-
Service matrix, which is used by the Recommender to make
recommendations.

In particular, our implementation of the Recommender is
based on Taste3, an extensible framework that implements
many collaborative filtering algorithms available in litera-
ture. Firstly, it compares the rows of the user-service matrix
– representing the users’ profiles – in order to calculate
the similarity between users. The most similar users to the
given one form the user’s neighborhood. At run-time, given
a specific user, the profiles of his neighbors are taken into
account jointly in order to identify the most appreciated
services (i.e. the matrix cells containing the highest values).
From that set of services, the ones that the given user has
not yet seen are recommended.

User-Service Matrix 
Access 

Synchronizer

Un-Normalized
User-Service

Matrix

Normalized
User-Service Matrices

Parser

User-Service 
Correlation
Analyzer

Recommender

Log files

User
History

Recommendations

Figure 1. The refined internal architecture

Since on the one hand it takes a while for User-Service
Correlation Analyzer to update all the matrix cells and on
the other hand the Recommender has to provide recom-
mendations on demand, a synchronization problem might
arise due to concurrent accesses to the User-Service Matrix.
For this reason, we use two copies of the User-Service
Matrix. One matrix is used by Recommender to provide
on-line recommendations while the other one is updated by

3. http://taste.sourceforge.net

User-Service Correlation Analyzer. When the User-Service
Correlation Analyzer finishes to update the off-line matrix,
then the two matrices are swapped. After each swap, the
updates made on the “new” on-line matrix are copied into
the “new” off-line matrix, to keep their content consistent.

The component named User-Service Matrix Access Syn-
chronizer is indeed responsible for granting access to the
right matrix. In Figure 1, a third matrix also appears beside
the two copies of the User-Service Matrix: it differs from
them by the fact that it is not normalized (this issue will be
discussed later).

In the rest of the section we detail the implementation of
the core of our approach.

3.2.1. User-Service Correlation Analyzer. It considers ev-
ery user separately. Firstly, it collects all actions made by
a specific user. Then, for each action, it gets the reference
to the service related to that action and updates the cell of
the matrix that corresponds to the intersection between the
row of the user and the column of the service by adding
the action weight. Formally, the User-Service Correlation
Analyzer runs the algorithm in Figure 24.

The first time this algorithm is executed, the User-Service
Matrix contains only null values. When the algorithm is
executed, for each user it extracts from the User History
all actions that the algorithm has not yet taken into consid-
eration. Then, every action implies to update the value of a
cell of the matrix: the weight of the action is summed to the
value already stored in that cell.

The values contained in the matrix will vary on different
scales due to the fact that users perform different numbers of
actions. To allow comparison between any users (irrespective
of the number of actions they performed), it is necessary to
shift the values of every user to a common scale. For this
reason, finally, a normalization step is executed.

After the normalization of all values, the values in all
the rows of the matrix can be used to make recommen-
dations. However, if the algorithm is executed once more
(for example, because the User-Service Matrix needs to be
updated taking into account new actions performed by the
users within the portal), the action weights cannot be simply
summed to the values included in the cells because they have
been normalized while the weights have not.

For this reason, a User-Service Matrix containing values
computed by the algorithm in Figure 2 without the normal-
ization step is maintained and managed by the User-Service

4. max(u) and min(u) are respectively the maximum and minimum
values in the relations between user u and all services. MAX and MIN
are respectively the maximum and minimum value used to express the
strength of any relations between users and services in the matrix R. Given
an action a, a.weight denotes the weight of the action, a.timestamp
denotes the instant at which the action occurred, a.user identifies the user
that performed the action and a.service identifies the service related to
the action (e.g. if a user rated a service, then the service related to that
action is the one rated by the user). lastExecutionT imestamp stores
the instant of the last execution of this algorithm.



1: for all user u do
2: updatedStrengths← ∅
3: minOrMaxChanged← false
4: for all action a ∈ UserHistory such that a.user =

u and a.timestamp > lastExecutionT imestamp
do

5: s← a.service
6:
7: {Update the value of relation between u and s}
8: R(u, s)← R(u, s) + a.weight
9: updatedStrengths← updatedStrengths ∪ {s}

10:
11: if R(u, s) > max(u) then
12: max(u) = R(u, s)
13: minOrMaxChanged← true
14: end if
15: if R(u, s) < min(u) then
16: min(u) = R(u, s)
17: minOrMaxChanged← true
18: end if
19: end for
20:
21: {Normalization of the values of the user’s relations}
22: if minOrMaxChanged then
23: for all service s do
24: if R(u, s) 6= NULL then

25: R(u, s) ←
R(u, s)−min(u)
max(u)−min(u)

× (MAX −
MIN) + MIN

26: end if
27: end for
28: else
29: for all service s ∈ updatedStrengths do
30: if R(u, s) 6= NULL then

31: R(u, s) ←
R(u, s)−min(u)
max(u)−min(u)

× (MAX −
MIN) + MIN

32: end if
33: end for
34: end if
35: end for

Figure 2. Evaluation of the strength of the relations
between users and services

Matrix Access Synchronizer (in Figure 1 it is named Un-
Normalized User-Service Matrix).

4. Conclusion and Future Works

We proposed an extension of the collaborative filtering
approach for making recommendations, designed to exploit
all the information coming from a Web 2.0 portal – rather
than merely the ratings explicitly assigned by users – in

order to build more accurate users’ profiles, so that more
effective recommendations are provided. In addition, we
described a real use-case (Service-Finder) where the ap-
proach has been implemented and we cited another project
(SOA4All) where we are going to improve the approach, e.g.
by adding a content-based module that exploits the semantic
annotations available for services to identify those services
that are similar to the ones the user interacted with (so that
the user-service matrix sparsity [6] can be reduced). Finally,
we are going to follow a twofold procedure in order to
obtain both some data that demonstrate the quality of the
recommendations provided with our approach (by analyzing
implicit and explicit user feedbacks), and some guidelines
that help developer in setting appropriate action weights.

Acknowledgment

This research has been partially supported by the EU
co-funded projects named Service-Finder (FP7-IST-215876)
and SOA4All (FP7-215219).

References

[1] G. Adomavicius and A. Tuzhilin. Toward the Next Generation
of Recommender Systems: A Survey of the State-of-the-Art
and Possible Extensions. Knowledge and Data Engineering,
IEEE Transactions on, 17(6):734–749, 2005.

[2] John S. Breese, David Heckerman, and Carl Kadie. Empirical
Analysis of Predictive Algorithms for Collaborative Filtering.
pages 43–52. Morgan Kaufmann, 1998.

[3] Greg Linden, Brent Smith, and Jeremy York. Amazon.com
Recommendations: Item-to-Item Collaborative Filtering. IEEE
Internet Computing, 7(1):76–80, January 2003.

[4] Raymond J. Mooney, Paul N. Bennett, and Loriene Roy. Book
recommending using text categorization with extracted infor-
mation. In Proceedings, AAAI-98 Workshop on Recommender
Systems, pages 49–54, Madison, WI, July 1998. AAAI.

[5] Dmitry Y. Pavlov and David M. Pennock. A Maximum Entropy
Approach to Collaborative Filtering in Dynamic, Sparse, High-
Dimensional Domains. In In Proceedings of Neural Informa-
tion Processing Systems, pages 1441–1448. MIT Press, 2002.

[6] Badrul Sarwar, George Karypis, Joseph Konstan, and John
Riedl. Item-Based Collaborative Filtering Recommendation
Algorithms. In WWW ’01: Proceedings of the 10th interna-
tional conference on World Wide Web, pages 285–295, New
York, NY, USA, 2001. ACM.

[7] Guy Shani, David Heckerman, and Ronen I. Brafman. An
MDP-Based Recommender System. J. Mach. Learn. Res.,
6:1265–1295, 2005.

[8] Upendra Shardanand and Patti Maes. Social Information
Filtering: Algorithms for Automating “Word of Mouth”. In
Proceedings of ACM CHI’95 Conference on Human Factors
in Computing Systems, volume 1, pages 210–217, 1995.


