
Exposing heterogeneous data sources
as SPARQL endpoints

through an object-oriented abstraction

Walter Corno, Francesco Corcoglioniti, Irene Celino, and Emanuele Della Valle

CEFRIEL - Politecnico di Milano,
Via Fucini 2, 20133 Milano, Italy

email: walter.corno@students.cefriel.it,
for other authors {name.surname}@cefriel.it

website: http://swa.cefriel.it

Abstract. The Web of Data vision raises the problem of how to expose
existing data sources on the Web without requiring heavy manual work.
In this paper, we present our approach to facilitate SPARQL queries over
heterogeneous data sources.
We propose the use of an object-oriented abstraction which can be auto-
matically mapped and translated into an ontological one; this approach,
on the one hand, helps data managers to disclose their sources with-
out the need of a deep understanding of Semantic Web technologies and
standards and, on the other hand, takes advantage of object-relational
mapping (ORM) technologies and tools to deal with different types of
data sources (relational DBs, but also XML sources, object-oriented DBs,
LDAP, etc.).
We introduce both the theoretical foundations of our solution, with the
analysis of the relation and mapping between SPARQL algebra and
monoid comprehension calculus (the formalism behind object queries),
and the implementation we are using to prove the feasibility and the
benefits of our approach and to compare it with alternative methods.

1 Introduction

The Semantic Web has as ultimate goal the construction of a Web of Data, i.e.
a Web of interlinked information expressed and published in a machine-readable
format which enables automatic processing and advanced manipulation of the
data itself. In this scenario, initiatives like the Linking Open Data community
project1, guidelines and tutorials on how to publish data on the (Semantic)
Web [1, 2] and standards for querying this Web of Data like SPARQL [3, 4] play
a central role in the realization of the Semantic Web vision.

To achieve this aim, however, it is necessary to find an easy and automated
– as much as possible – way to expose existing data sources on the Web. To this
end, two big classes of approaches are being studied to help data managers to
prepare their data sources for the Semantic Web: conversion and wrapping.
1 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

2 W. Corno, F. Corcoglioniti, I. Celino, E. Della Valle

With conversion we mean all the techniques to effect a complete translation
of the data source from its native format to a Semantic Web model (pure RDF
or RDF triples described by some kind of ontologies in RDFS/OWL). This ap-
proach assures a complete replication and porting of the data in a format that
can be easily stored in a triple store and queried directly using the SPARQL
query language and protocol. The conversion, however, raises several concerns
about its applicability to real-world data sources: time-variant sources would
need a frequent re-conversion to RDF or intelligent workarounds to trigger mod-
ifications in the triple store to synchronize it with the original data source; large
sources would imply heavy data replication, in terms of both conversion process-
ing and space occupation.

With wrapping, on the other hand, we mean all the techniques aimed at
building an abstraction layer over the original data source which hides the un-
derlying format and structure and exposes a SPARQL endpoint to be queried.
This approach requires the run-time translation of the SPARQL query request
to the source’s specific query language and the run-time conversion of the query
results back to the requester.

Several proposals, that are gaining ground within the Semantic Web commu-
nity, belong to this second kind of approach: those solutions propose the decla-
ration of a mapping between the original data format and the respective RDF
data model to enable the wrapping of the data source. Most of those approaches,
however, deal with the wrapping of relational databases (see Section 2): in this
way other kinds of data sources cannot be considered (like XML sources, object-
oriented DBs, LDAP, etc.). Moreover, this direct mapping requires the developer
to have quite a deep understanding of Semantic Web languages, technologies and
formats to express the declaration of correspondences.

In this paper, we present our proposal for a new approach that tries to over-
come the aforementioned problems. Our approach belongs to the wrapping cate-
gory, but tries to give a solution to the heterogeneity of data sources as well as to
the problem of adoption by the larger community of developers. For the former
issue, we provide a solution based on the availability of approaches and tools to
wrap different data sources with an object-oriented abstraction; for the latter
problem, we propose an automatic mapping between the object-oriented model
(in ODL) and the correspondent one at the ontological level (in OWL-DL, see
Section 3). Our approach is both theoretically sound – because of the affinity be-
tween object-orientation and ontology modelling and because of the accordance
of the respective formalisms (SPARQL algebra [3] and monoid comprehension
calculus [5], see also Section 2) – and technologically and technically feasible –
because we realized SPOON, the reference implementation of our approach.

The remainder of the paper is structured as follows: Section 2 introduces re-
lated approaches and theoretical foundations; Section 3 explains the automatic
mapping between object-oriented models and ontologies (with its constraints);
we illustrate our approach to query translation in Section 4 and our implementa-
tion and evaluation framework in Section 5; concluding remarks and next steps
are finally presented in Section 6.

Exposing data sources as SPARQL endpoints through an OO abstraction 3

2 Related work

In order to enable a faster expansion of the Web of Data, in the last few years
some efforts arose with the aim to expose existing datasources, especially rela-
tional databases (RDBMs), on the Web and to query them through SPARQL [3].
For instance, Cyganiak and Bizer studied similarities between SPARQL algebra
and relational algebra [6] and developed D2RQ [7] and D2R Server [8], to build
SPARQL endpoints over RDBMs. SquirrelRDF [9] exposes both relational and
LDAP sources, but it is still incomplete; SPASQL [10] is a MySQL module that
adds native SPARQL support to the database; Relational.OWL [11], Virtuoso
Universal Server [12], R2O [13] and DB2OWL [14] are other projects that aim
to expose relational data on the Web.

While relational databases are the most widespread, the most common pro-
gramming paradigm is object-oriented (OO) programming. Since the OODBMS
Manifesto [15] many projects developed proprietary object datasources (e.g.
O2 [16], Versant [17], EyeDB [18], and so on), but none of them strictly follows
the ODMG Standard [19], so these technologies failed in being either widely
used or interoperable. As a consequence, new technologies were born from the
cited ones: the Object-Relational Mappings (ORMs), that allow to use relational
sources as if they were object datasources and to query them in an object-
oriented way. Well-known ORMs are Hibernate [20], JPOX [21], iBatis SQL
Maps [22] and Kodo [23]. Among these, JPOX and Kodo implement the JDO
specification [24], a standard Java-based model of persistence, that allows to
use not only RDBMs but also many other types of source (OODBMS, XML,
flat files and so on)2. Even if different in syntax and characteristics, all the ob-
ject query languages developed so far are based on the Object Query Language
(OQL) developed by the ODMG consortium [19]. The monoid comprehension
calculus [5] is a framework for query processing and optimization supporting the
full expressiveness of object queries; it can be considered as a common formalism
and theoretical foundation for all OQL-like languages. This formalism has been
used in [25] to translate queries in description logics to object-oriented ones.

3 Schema and data mapping

The first step of our proposed approach is to help the data manager to expose
his data-source schema (already wrapped by an ORM) as an ontological model.
To this end, we propose to adopt a specific mapping strategy to make this step
completely automatic (albeit some restrictions/constraints on the OO model).

Object-oriented model is much more similar to ontological model than rela-
tional one. In particular, these models share a common set of primitives (e.g.
classes, properties, inheritance,. . .), and can describe relationships between classes
directly, whereas the relational model may require complex expedients such as
the use of join tables.

2 For these reasons in our implementation we chose JPOX as ORM tool.

4 W. Corno, F. Corcoglioniti, I. Celino, E. Della Valle

OO and ontological models are not fully equivalent, as shown in [26, 27]
(e.g. single vs. multiple inheritance and local vs. global properties); however the
issues highlighted in these works are only relevant for the problem of describing
an existing ontology as an object model (due to some limitations of the OO
model), while in our approach we deal with the opposite problem (i.e., to expose
an OO model as an ontology).

In our approach we propose a one-to-one mapping as simple as possible (sim-
ilar to the one shown in [28]), because we aim to automatize it, simplifying the
development process. We use ODL [19] as OO formalism and a subset of OWL-
DL [29] (represented by the constructs in Table 1 and disjointness, as explained
below) as the ontology language. The schema mapping is described in Table 1.

Concept ODL OWL-DL

Class class owl:Class
Subclass class A extends B rdfs:subClassOf
Property attribute/relationship owl:DatatypeProperty/ObjectProperty
Inverse relationship inverse owl:inverseOf
Property domain implicit rdfs:domain
Property range property type rdfs:range
Primitive types int, double,. . . XSD datatypes
Functional property non-collection types owl:FunctionalProperty
Non-functional prop. set<T>3 implicit

Table 1. Schema mapping

In addition to these correspondences, we add disjoint constraints to the ontology
because objects can belong only to a single OO class (with its parents):

∀ class C1, C2 : 6 ∃ class C subClassOf C1, C2,

generate 〈C1 owl:disjointWith C2〉

Moving from schema to instance mapping, primitive instances are mapped to
RDF literals, while to map objects we need a way to create URIs for them
(because they become RDF resources). The simplest approach we adopt is to
combine a fixed namespace with a variable local name, formed by the values of
a particular ID property; we prefer not to use the OIDs commonly employed
in OODBMS, due to their limited support among ORMs. Object attributes
and relationships are then translated into RDF triples, using the corresponding
predicates as defined by the schema mapping.

To keep the mapping simple and ease its automatization, we introduce some
constraints on the OO model:
3 Set is the collection type and T is the type of the elements contained in this collec-

tion.

Exposing data sources as SPARQL endpoints through an OO abstraction 5

– all classes have to contain an alphanumeric property ID, with a unique value
(in class hierarchies it can be inherited from a parent class).

– OO properties having the same name in unrelated classes can only be mapped
to different ontological predicates, thus having distinct semantics.

– collection properties are limited to the set type (no bag, list or map).
– interfaces are not supported (and thus multiple inheritance).
– all classes have an extent in order to be directly used in OO queries (see [19]

for extent definition).

Figure 1 shows the translation to an OWL ontology of a simple ODL schema,
which will be used as a running example throughout the paper.

class Employee (extent Employees) {
attribute string id;
attribute string name;

}

class Researcher extends Employee
(extent Researchers) {

attribute string degree;
relationship set<Project> project

:Project a owl:Class .

:Employee a owl:Class .

:Researcher a owl:Class ;
rdfs:subClassOf :Employee .

:Manager a owl:Class ;
rdfs:subClassOf :Employee .

:hasName a owl:DatatypeProperty ;
a owl:FunctionalProperty ;
rdfs:domain Employee ;
rdfs:range xsd:string .

:hasDegree a owl:DatatypeProperty;
a owl:FunctionalProperty ;
rdfs:domain :Researcher ;
rdfs:range xsd:string .

:hasYear a owl:DatatypeProperty ;
a owl:FunctionalProperty ;
rdfs:domain Project ;
rdfs:range xsd:integer.

:hasProject a owl:ObjectProperty ;
rdfs:domain :Researcher ;
rdfs:range :Project ;
owl:inverseOf hasResource .

Researcher

degree

Employee

id

name

Manager

Project

id

year

+resources

+project

*

*

pm 1

relationship set<Project> project
inverse Project:resources;

}

class Manager extends Employee
(extent Managers) {

}

class Project (extent Projects) {
attribute string id;
attribute integer year;
attribute Manager pm;
relationship set<Researcher> resources

inverse Researcher::project;
}

owl:inverseOf hasResource .

:hasResource a owl:ObjectProperty ;
rdfs:domain :Project ;
rdfs:range :Researcher ;
owl:inverseOf :hasProject .

:hasPM a owl:ObjectProperty ;
a owl:FunctionalProperty ;
rdfs:domain :Project ;
rdfs:range :Manager .

:hasID a owl:DatatypeProperty ;
a owl:FunctionalProperty ;
rdfs:range xsd:string .

(a) (b)

Fig. 1. Running example schema mapped to the corresponding ontology.

6 W. Corno, F. Corcoglioniti, I. Celino, E. Della Valle

4 Query translation

In this section we present our framework to translate a SPARQL query into
one or a few object queries. The general process is shown in Figure 2, sketched
hereafter and explained in details throughout the whole section.

Analysis
●OQL
●JDOQL
●HQL
●...

Translation

ExecutionSemantic
Analysis

Syntactic
Analysis

Reduction

SPARQL
Algebra
to
MCC

Fig. 2. The general query processing framework

When a new SPARQL query is sent to our system, first we perform an anal-
ysis process both at the syntactic and semantic levels. During syntactic analysis
the query is parsed, checked for syntactic errors and then translated into its
equivalent SPARQL algebraic form [3], which is then normalized. In this for-
mat, a query is represented as a tree composed of basic graph patterns (BGP) as
leaves and of the algebraic operators filter (σpred), union (∪), join (./), left join
(npred) and diff (−pred)4 as internal nodes. Then we perform semantic analy-
sis: we apply some checks and rewriting rules to ensure that the query can be
processed by the next phases. Variables on predicates are resolved and variables
on subjects/objects are assigned to the corresponding OO classes.

The second step is the core one of our framework: the query translation. In
this step the SPARQL algebraic form of the query is translated in a monoid
comprehension calculus [5] expression, so the initial SPARQL query is now ex-
pressed as a query on the OO model. The translation starts processing basic
graph patterns (BGPs) and then translating each SPARQL algebraic operator
we meet when traversing the SPARQL algebraic form of the query in a bottom-up
approach. When this translation is completed, we apply the normalization rules
demonstrated in [5] to the global expression (reduction phase), so that we get a
simpler expression (as we will see, a union of monoid comprehensions).

The last step is the query execution. In this step the obtained union of monoid
comprehensions is translated into queries of the particular OO query language
used for the implementation of the framework and then executed. Eventually the
final result-set is translated into the one compatible with the original SPARQL
query (select, construct, describe, ask).

In the remaining of this section we explain these three steps in detail, contin-
uing the running example introduced in Section 3 with the following SPARQL

4 To ease the notation, we borrow the symbols of relational algebra, where the subscript
formulae for left join, diff and filter nodes represent their predicates.

Exposing data sources as SPARQL endpoints through an OO abstraction 7

query, whose effect is to return the URI, the names and (optionally) the degree
of all the employee related to projects of 2006 and later.

SELECT ?e ?n ?d
WHERE {

?p hasYear ?y ;
?r ?e .

?e hasName ?n .
OPTIONAL { ?e hasDegree ?d }
FILTER (?y >= 2006)

}

4.1 Analysis

The analysis phase takes care of parsing, checking and transforming the SPARQL
query in order to prepare it for the subsequent translation phase. Query analysis
is performed both at the syntactic and semantic levels.

Syntactic analysis. The first step is to parse the input query string, check
its syntax and produce as output its equivalent representation in SPARQL al-
gebra [3], as shown in Figure 4 (a) for the query of the running example. The
parsed algebraic representation is then normalized, in order to “collapse” as far
as possible the BGPs of the query and to reach a form easier to analyse and
translate. The normalization procedure consists of three steps:

1. Left joins replacement, with a combination of union, join, filter and diff
operations, according to the rule [3]:

Anpred B ⇒ σpred(A ./ B) ∪ (A−pred B) (1)

2. Variable substitution; for each diff node, change the names of the variables
which appear in the right-hand operand (the “subtrahend”) but not in the
left-hand (the “minuend”) with new, globally unique names.

3. Transformation; the algebraic structure of the query is transformed, by ex-
ploiting the commutativity of ./ and ∪, the distributivity of ./ and the left
distributivity of −pred with respect to ∪ and the rules listed below, until no
more transformations are possible5:

σpred(A ∪B)⇒ σpred(A) ∪ σpred(B) (2)
A−pred (B ∪ C)⇒ (A−pred C)−pred B (3)
σpred(A) ./ B ⇒ σpred(A ./ B) (4)

σpred1(A)−pred2 B ⇒ σpred1(A−pred2 B) (5)
(A−pred B) ./ C ⇒ (A ./ C)−pred B (6)
BGP1 ./ BGP2 ⇒ merge of BGP1 and BGP2 (7)

5 Rule 6 is only valid thanks to the variable substitution performed in the previous
step, which avoids variable names clashes when moving up the diff node.

8 W. Corno, F. Corcoglioniti, I. Celino, E. Della Valle

The effect of these rules is to rearrange the operators to obtain the following
order (from the top) ∪, σpred,−pred; note that join operators are all removed
by rule 7. As shown in Figure 3, a normalized query consists of an (optional)
union of basic queries each one consisting of a BGP whose results can be fil-
tered by one or more diff operations. Roughly, each basic query will originate
a SELECT . . . FROM . . . WHERE . . . object query with nested sub-queries for
diff operators; the final result-set will be obtained by executing these queries
and merging their results. Figure 4 (b) shows the normalized algebra for the
example query.

σpred

υ1

- pred1

- predn

BGP ... (other basic query)

... (other basic query)

... (other basic query) ... (other basic query)

υm

...

...

Basic query structure

Composed of an optional filter, zero or
more diff nodes and a required BGP

Fig. 3. Normalized query structure

Semantic analysis. This step aims at transforming the normalized query so
that (1) constraints on URIs are restated in terms of constraints on the ID
attribute (2) variables on triple predicates are removed (by enumerating the
possible cases) and (3) each URI or non-literal variable is associated to a single
OO class. Each of these goals is addressed in a different analysis step:

1. Rewriting of URIs; for each URI 〈x〉 in the query, all of its occurrences are
replaced with a new variable ?x, while a new 〈?x :hasID ID〉 triple is added
to each BGP of the query which uses the variable. Note that the ID can be
extracted from the URI textual representation (see Section 3).

2. Rewriting of variables on predicates; each BGP containing such variables is
replaced with a union of multiple BGPs, each one corresponding to an ac-
ceptable combination of predicate assignments to these variables. A reasoner
can be used to identify the alternatives, by classifying nodes in the BGP and
exploiting the domain and range constraints of predicates6. The assignment
of predicates to variables is recorded in an auxiliary data structure for each
basic query, in order to return them together with the results in case vari-
ables on predicates are included in the SELECT clause (or CONSTRUCT

6 The reasoner can be used as explained in step BGP validation and class assignment ;
note, however, that the choice of predicates is not critical, because even if invalid
predicates are considered, the next validation step will remove them

Exposing data sources as SPARQL endpoints through an OO abstraction 9

template) of the query. Finally, since the algebraic structure is modified, at
the end of this step the query may need to be re-normalized again.

3. BGP validation and class assignment. A check is done that each variable is
used only as a literal or URI, but not both. Then, a graph is built for each
BGP by removing all the triples containing literal values, and a blank node
is introduced for each other variable. An OWL DL reasoner is used to (1)
check if this graph is consistent with the ontology and (2) infer new rdf:type
triples for resources and variables (the blank nodes), which allow to associate
an OO class to each node. If any of the checks fails, the BGP is discarded
and the algebraic structure is adjusted accordingly (e.g. by removing parent
diff or filter nodes too).

The query resulting from semantic analysis is ready to be translated. Figure 4 (c)
shows the result of the semantic analysis for the query of the running example.

σ?y ≥ 2006

true

?p :hasYear ?y
?p ?r ?e
?e :hasName ?n

?e :hasDegree ?d

(a) (b)

σ?y ≥ 2006

?p :hasYear ?y
?p ?r ?e
?e :hasName ?n
?e :hasDegree ?d

?e :hasDegree ?d?p :hasYear ?y
?p ?r ?e
?e :hasName ?n

σ?y ≥ 2006

- true

υ

σ?y ≥ 2006

?p a :Project
?p :hasYear ?y
?p :hasResource ?e
?e a :Researcher
?e :hasName ?n

?e a :Researcher
?e :hasDegree ?d

?p a :Project
?p :hasYear ?y
?p :hasResource ?e

σ?y ≥ 2006

- true ?p a :Project
?p :hasYear ?y
?p :hasPM ?e
?e a :Manager

σ?y ≥ 2006

υ

υ

(c)

?e :hasName ?n
?e :hasDegree ?d

?p :hasResource ?e
?e a :Researcher
?e :hasName ?n

?e a :Manager
?e :hasName ?n

Fig. 4. Analysis of the example query: (a) parsed query, (b) normalized query (c)
resulting query.

4.2 Translation

This phase is divided in two steps: translation in monoid comprehension calculus
and normalization of the resulting expression. The first step starts translating the
BGPs and then each SPARQL algebraic operator, using a bottom-up approach;
the second step aims at reaching a normalized form of the expression, through
a set of normalization rules defined in [5].

The monoid comprehension calculus is a framework for object query process-
ing and optimization. We now give a brief overview of this calculus, readers are
referred to [5] for more detailed information.

10 W. Corno, F. Corcoglioniti, I. Celino, E. Della Valle

Object query languages deal with collections of homogeneous (i.e. of the same
type) objects and primitive values such as sets, bags and lists, whose semantics
can be captured by the notion of a monoid. A monoid is an algebraic structure
consisting in a set of elements and a binary operation defined on them having
particular algebraic properties. Collections of objects and operations on them
(such as set and bag union and list concatenation, but also aggregate operations
like max and count) can be represented as collection monoids; similarly, oper-
ations like conjunctions and disjunctions on booleans and integer addition over
collections can also be expressed in terms of so-called primitive monoids.

The basic structure of the calculus is the monoid comprehension, that can
describe a query or a part of it. This structure takes the form ⊕{e | q̄}, where:

– ⊕ is a function called accumulator, that identifies the type of monoid by
specifying how to compose (i.e. which operation should be used) the elements
obtained by the evaluation of the comprehension;

– e is called head and it is the expression that defines the result;
– q̄ is a sequence of qualifiers; these can be generators of the form v ← e′,

where v is a variable ranging over the collection produced by the expression e′

(which can be a monoid comprehension too), or filters of the form pred, which
express constraints over the variable bindings produced by the generators.

For instance, this monoid comprehension:]{v1, v2|v1 ← X, v2 ← X.y, v2 > n}
can be read as: “for all v1 in X and for all v2 in X.y such that v2 > n consider
the pairs v1, v2 and merge them (by applying the] accumulator) to obtain a
bag”. The accumulator functions in our translation are only] and ∨: the for-
mer defines a bag of solutions, while the latter is used to define the existential
quantification.

BGP translation. A generic BGP contains a set of triple patterns. At the
beginning of this step we reorder these triples. A set of triple patterns can be
viewed as a directed graph, with vertices corresponding to subjects and objects
and edges between them corresponding to triples and labelled with their predi-
cates; if the graph contains some cycles, we break them by duplicating a vertex,
thus obtaining a directed acyclic graph (DAG). To order the triples we perform
a depth-first visit, starting from the root nodes of the DAG. Triples with rdf:type
as predicate are not considered during the reordering process: they are removed
and used later to resolve the assignment of variables to OO classes (as described
below). Figure 5 shows the reordering process for a BGP of the running example
(the leftmost in Figure 4 (c)).

Now the BGP is translated in the corresponding monoid comprehension fol-
lowing these criteria:

1. the accumulator function is always], because a BGP returns a bag of solu-
tions;

2. the set containing all the variables contained in the triples forms the head
of the monoid comprehension;

Exposing data sources as SPARQL endpoints through an OO abstraction 11

?e :hasName ?n
?p :hasResource ?e
?e :hasDegree ?d
?p :hasYear ?y

(a)

?p

?y

:hasYear

?e

?n

:hasResource

:hasName

?p :hasYear ?y
?p :hasResource ?e
?e :hasName ?n
?e :hasDegree ?d

(b)
?d

:hasDegree

Fig. 5. Triples reordering

3. the qualifiers in the body of the comprehension are generated by iterating
over the ordered triples 〈varsub pred obj〉 and applying the following rules
to each one:
– if varsub occurs for the first time, a new generator varsub ← Class

(where Class is the OO class assigned to the variable) is added;
– if obj is a variable varobj occurring for the first time, a generator of the

form varobj ← varsub.pred (the symbol ← is changed with ≡ when pred
is a functional property) is created. If pred is a functional property and
varobj does not appear as the subject of other triples, a filter of the form
varobj 6= null is added too7;

– if obj is a literal or a variable already encountered, a new filter is created:
• if pred is a functional property, the filter takes the following form:
varsub.pred = obj;
• else the filter takes the form: var′ ← varsub.pred, var

′ = obj (where
var′ is a new globally unique variable).

Equation 8 shows the resulting comprehension for the BGP of Figure 5.

]{p, y, e, n, d | p← Project, y ≡ p.year, y 6= null, e← p.resources,

n ≡ e.name, n 6= null, d ≡ e.degree, d 6= null} (8)

Compound constructs translation. Each SPARQL algebraic operator can
be translated to a corresponding monoid comprehension expression. Using P to
describe a generic pattern (BGPs or group-graph-patterns, i.e. BGPs composed
with algebraic operators), we indicate with τ(P) the translation of P .

In Table 2 are shown the translation rules. These rules are applied using a
bottom-up approach, starting from the leaves of the tree and moving up towards
the root (see Figure 4(c)). We do not define rules for join (./) and left join
7 Not null constraints are required because all variables must be bound to a value in

solutions of a BGP pattern.

12 W. Corno, F. Corcoglioniti, I. Celino, E. Della Valle

(npred) because these operators are eliminated in the analysis step (see Sec-
tion 4.1).

Rule SPARQL algebra Monoid Comprehension

T1 P τ(P)
T2 σpred(P)]{x|x← τ(P), pred}
T3 ∪(PA, PB) τ(PA)] τ(PB)
T4 −pred(PA, PB)]{x|x← τ(PA),¬ ∨ {pred | y ← τ(PB)}}

Table 2. Translation of SPARQL Algebra constructs

Simplification rules. At the end of the translation step, we obtain a compo-
sition of nested monoid comprehensions. In their work [5], Fegaras and Maier
suggest a set of meaning-preserving normalization rules, to unnest many kinds
of nested monoid comprehension. The relevant rules for our approach are shown
in Table 3.

Rule Before After

N1 ⊕{e | q̄, v ← (e1 ⊗ e2), s̄} (⊕{e | q̄, v ← e1, s̄}) ⊕ (⊕{e | q̄, v ← e2, s̄})
for commutative ⊕ or empty q̄

N2 ⊕{e | q̄, v ← ⊗{e′ | r̄}, s̄} ⊕{e | q̄, r̄, v ≡ e′, s̄}
Table 3. Relevant normalization rules

The monoid comprehension expression resulting from the example query (Fig-
ure 4 (c)) is the following:

(]{p, y, e, n, d | p← Project, y ≡ p.year, y 6= null, e← p.resources,

n ≡ e.name, n 6= null, d ≡ e.degree, d 6= null, y ≥ “2006”})
]

(]{p, y, e, n | p← Project, y ≡ p.year, y 6= null, e← p.resources,

n ≡ e.name, n 6= null, y ≥ “2006”,¬ ∨ {true | d ≡ e.degree, d 6= null}})
]

(]{p, y, e, n | p← Project, y ≡ p.year, y 6= null, e ≡ p.pm, n ≡ e.name,
n 6= null, y ≥ “2006”}) (9)

Exposing data sources as SPARQL endpoints through an OO abstraction 13

The expression obtained at the end of these steps can be already translated
into object queries. However, exploiting the comprehension calculus it can be
further optimized, e.g., simplifying some variables or collapsing some monoid
comprehensions. We do not describe this process here due to limited space and
because we are still working to identify a set of general simplification rules. To
give an idea of the possible improvements, however, we show in Equation 10 the
optimized expression for the example query.

(]{p, e, n, d | p← Project, e← p.resources, e.name 6= null,

p.year ≥ “2006”, n ≡ e.name, d ≡ e.degree})
]

(]{p, e, n | p← Project, e ≡ p.pm, e.name 6= null,

p.year ≥ “2006”, n ≡ e.name}) (10)

4.3 Execution

In this last step we translate the normalized monoid comprehension expression
into object queries, execute them on the datasource and convert the results in the
format expected by the original SPARQL query. In this section we describe the
translation to OQL; note, however, that the translation to other OQL dialects
(such as JDOQL used by SPOON) is similar.

The normalized expression produced by the translation phase is a union of
monoid comprehensions. Each of these monoid comprehensions is translated to
a separate object query in a straightforward manner: all the expressions for the
variables in the head are returned in the SELECT clause (for object variables we
extract the object IDs, not the full objects), generators become the collections
on which variables iterate in the FROM clause and filters become a conjunction
of constraints in the WHERE clause. The monoid comprehension of the form:
“¬∨{. . .}” (that appears in rule T4 of Table 2) becomes a subquery of the form:
“NOT EXISTS (SELECT. . .)”, also belonging to the WHERE clause.

The OQL translation of the running example query is reported below. We
show the translation of the simplified comprehensions of Equation 10; however,
translation to object queries is applicable starting from the comprehensions of
Equation 9 (but the resulting queries would be not so compact.).

SELECT p.id, e.id, e.name, e.degree
FROM Projects p, p.resources e
WHERE e.name != null AND

p.year >= 2006

SELECT p.id, p.pm.id, p.pm.name
FROM Projects p
WHERE p.pm.name != null AND

p.year >= 2006

14 W. Corno, F. Corcoglioniti, I. Celino, E. Della Valle

The queries obtained so far are executed one by one, then the result-sets are
merged together and SPARQL solution sequence modifiers [3] (order by, distinct,
reduced, offset and limit) are applied to the whole result-set. The last thing to
do is the conversion of the obtained result-set in the format expected by the
SPARQL query:

– for SELECT queries, we select from the result-set only the requested vari-
ables and return a table-form result-set;

– for ASK queries, we return true if the result-set is not empty, false otherwise;
– for CONSTRUCT queries, we create an RDF graph with the data from the

result-set;
– DESCRIBE queries are currently not directly supported by our approach,

however a DESCRIBE query can always be translated to a CONSTRUCT
query that asks for all the triples with the desired resource as subject or
object, and this kind of query is supported by our approach.

5 Implementation and evaluation

With regards to the comprehensive framework we presented in Section 4, we
decided to implement at least a part of it to prove the feasibility of our approach.
Therefore, we implemented SPOON – SParql to Object Oriented eNgine – a tool
based on Jena [30] and JPOX [21] which helps the automatic mapping between
an OO model and the respective ontological abstraction and translates SPARQL
queries in JDOQL [24] queries. Although our approach addresses the full range
of SPARQL constructs from a theoretical perspective, this first implementation
of SPOON is focused only on the main constructs, namely BGP and FILTER,
and it does not support variables on predicates.

In order to compare our approach with existing and competing systems, we
chose to set up an evaluation framework, by applying different approaches to
the same data source. We chose Gene Ontology [31] data source (GO), which is
available in different formats among which a SQL dump and a RDF format8.
The choice of GO is motivated by the fact that there is an increasing interest in
the integration and re-use of data sources from Health Care and Life Sciences
community; this objective, however, is usually realized by the complete replica-
tion and RDF conversion of the original data. We believe that our approach can
be interesting for this community, in that it saves both the replication (through
the employment of SPARQL endpoints) and the conversion of data (through the
wrapping of the data source), simplifying in the mean time the developer’s work.

Our evaluation, therefore, is conducted as in Figure 6: given a SPARQL
query, it is executed directly to the RDF version of GO, it is mapped to the GO
relational database through D2R and it is translated by SPOON into JDOQL
and executed by JPOX over the relational source of GO. More details and infor-
mation about SPOON and the preliminary results of its evaluation are available
on the Web at http://swa.cefriel.it/SPOON.
8 We modified a bit the RDF version of GO, as available on its Web site, because it

contains some errors that make it not well-formed RDF.

Exposing data sources as SPARQL endpoints through an OO abstraction 15

GOSQLGORDF

D2R JPOX

SPOON

SPARQL
query

Fig. 6. Evaluation framework

6 Conclusions

In this paper we presented our approach to the wrapping of heterogeneous data
sources to expose them as SPARQL endpoints; we employ an object-oriented
paradigm to abstract from the specific source format, as in ORM solutions, and
we base the run-time translation of SPARQL queries into an OO query language
on the correspondence between SPARQL algebra and monoid comprehension
calculus. Finally, we realized a proof of concept of our approach with SPOON,
which implements (a part of) our proposed framework, to evaluate it against
competing approaches.

Our future work will be devoted to the extension of SPOON implementation
to cover other SPARQL options (like OPTIONAL and UNION); we also plan to
extend the evaluation of our approach, from the point of view of the expressivity
and variance of the automatic mapping between the models, as well as from the
point of view of performances, in comparison with other existing approaches.

Acknowledgments

The work described in this paper is the main topic of Walter Corno’s Master Thesis
in Computer Engineering at Politecnico of Milano. The research has been partially
supported by the NeP4B project, funded by Italian Ministry of University and Research
(MIUR project, FIRB-2005). We would also like to thank professor Stefano Ceri for
his guidance and our colleagues at CEFRIEL for their support.

References

1. Bizer, C., Cyganiak, R., Heath, T.: How to Publish Linked Data on the Web,
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/. (2007)

2. Berrueta, D., Phipps, J.: Best Practice Recipes for Publishing RDF Vocabularies
– W3C Working Draft, http://www.w3.org/TR/swbp-vocab-pub/. (2008)

3. Seaborne, A., Prud’hommeaux, E.: SPARQL Query Language for RDF – W3C
Recommendation, Available at http://www.w3.org/TR/rdf-sparql-query/. (2008)

4. Torres, E., Feigenbaum, L., Clark, K.G.: SPARQL Protocol for RDF – W3C Rec-
ommendation, Available at http://www.w3.org/TR/rdf-sparql-protocol/. (2008)

16 W. Corno, F. Corcoglioniti, I. Celino, E. Della Valle

5. Fegaras, L., Maier, D.: Optimizing object queries using an effective calculus. ACM
Trans. Database Syst. 25(4) (2000) 457–516

6. Cyganiak, R.: A relational algebra for SPARQL. Technical Report 170, HP Labs
(2005)

7. D2RQ: The D2RQ Platform - Treating Non-RDF Relational Databases as Virtual
RDF Graphs http://www4.wiwiss.fu-berlin.de/bizer/d2rq/.

8. D2R-Server: Publishing Relational Databases on the Semantic Web
http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/.

9. SquirrelRDF: http://jena.sourceforge.net/SquirrelRDF/.
10. Prud’hommeaux, E.: Adding SPARQL Support to MySQL (2006)

http://www.w3.org/2006/Talks/0518-SPASQL/#(1).
11. de Laborda, C.P., Conrad, S.: Relational.OWL - A Data and Schema Representa-

tion Format Based on OWL. In: Proceedings of the Second Asia-Pacific Conference
on Conceptual Modelling (APCCM2005). (2005)

12. Blakeley, C.: Virtuoso RDF Views - Getting Started Guide. OpenLink Software.
(2007)

13. Barrasa, J., Corcho, O., Gómez-Pérez, A.: R2O, an Extensible and Semantically
Based Database-to-ontology Mapping Language. In: Proceeding of the Second
International Workshop on Semantic Web and Databases. (2004)

14. Cullot, N., Ghawi, R., Yétongnon, K.: DB2OWL: A Tool for Automatic Database-
to-Ontology Mapping. Université de Bourgogne. (2007)

15. Atkinson, M., et al.: The object-oriented database manifesto. In: Proceedings of
the First International Conference on Deductive and Object-Oriented Databases.
(1989)

16. O2 Technology: O2 ODMG Database System Tutorial. (1998)
17. Versant Object DB: http://www.versant.com/.
18. EyeDB: http://www.eyedb.org/.
19. Cattell, R., Barry, D.K., Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow,

O., Stanienda, T., Velez, F., eds.: The Object Data Standard: ODMG 3.0. Morgan
Kaufmann (1999)

20. Hibernate: http://www.hibernate.org/.
21. JPOX: http://www.jpox.org/.
22. Apache iBatis: http://ibatis.apache.org/.
23. BEA Kodo: http://bea.com/kodo/.
24. Russell, C.: Java Data Objects 2.0 JSR243. Sun Microsystems Inc. (2006)
25. Peim, M., Franconi, E., Paton, N.W., Goble, C.A.: Querying Objects with De-

scription Logics
26. Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: Object-Oriented

Semantic Web Programming. In: Proceedings of the Sixteenth International World
Wide Web Conference. (2007)

27. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.: Automatic Mapping of OWL
Ontologies into Java. In: Proceedings of the International Conference of Software
Engineering and Knowledge Engineering. (2004)

28. Athanasiadis, I.N., Villa, F., Rizzoli, A.E.: Enabling knowledge-based software en-
gineering through semantic-object-relational mappings. In: Proceedings of the 3rd
International Workshop on Semantic Web Enabled Software Engineering. (2007)

29. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview,
Available at http://www.w3.org/TR/owl-features/. (2004)

30. Jena – A Semantic Web Framework for Java: http://jena.sourceforge.net/.
31. Gene Ontology: http://www.geneontology.org/.

